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Abstract. First, we present a simple confining abelian pure gauge theory. Classically, its kinetic term is
not positive definite, and it contains a simple UV regularized F 4 interaction. This provokes the formation
of a condensate φ ∼ F 2 such that, at the saddle point φ̂ of the effective potential, the wave function
normalization constant of the abelian gauge fields Zeff(φ̂) vanishes exactly. Then we study SU(2) pure
Yang–Mills theory in an abelian gauge and introduce an auxiliary field ρ for a BRST invariant condensate
of dimension 2, which renders the charged sector massive. Under simple assumptions its effective low energy
theory reduces to the confining abelian model discussed before, and the VEV of ρ is seen to scale correctly
with the renormalization point. Under these assumptions, the confinement condition Zeff = 0 also holds
for the massive charged sector, which suppresses the couplings of the charged fields to the abelian gauge
bosons in the infrared regime.

1 Introduction

Various aspects of the confining phase of Yang–Mills the-
ories become more transparent in the abelian gauge [1,2],
notably the phenomenon of monopole condensation [1,3]
according to which the vacuum behaves as a dual super-
conductor. Since these monopoles are essentially configu-
rations of the gauge fields belonging to the U(1) Heisen-
berg sub-algebras of SU(N), the abelian subsector of non-
abelian gauge theories plays the dominant role for this
mechanism responsible for confinement. This phenomenon
is called abelian dominance [4,5].

In the abelian gauge the dynamics of the “abelian”
gauge fields is thus expected to differ considerably from
the dynamics of the “charged” gauge fields (associated
to off-diagonal generators, and charged with respect to
at least one U(1) subgroup). Whereas the abelian gauge
fields are expected to reproduce essentially the pheno-
menon of monopole condensation of compact QED in the
confining phase [6], the charged gauge fields are expected
to be massive and contribute only sub-dominantly to large
distance phenomena. This massive behavior of the charged
gauge field propagators has been observed in lattice stud-
ies [5].

As dynamical origin of the masses of the charged gauge
fields ghost–antighost condensates [7,8] and bi-ghost con-
densates [9] of dimension 2 have been proposed. Notably a
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∗ Unité Mixte de Recherche – CNRS – UMR 8627

particular combination of ghost–antighost and gauge field
condensates is BRST invariant (up to a total derivative)
both in the abelian gauge and a generalization of the
Lorentz gauge [10]. If this particular condensate is real-
ized, it describes simultaneously the dimension 2 gauge
field condensate discussed independently in [11,12] in the
Landau gauge. Note, however, that the ghost–antighost
condensates in [7] do not allow for such a BRST invari-
ant extension and thus necessarily induce a spontaneous
breakdown of BRST symmetry.

In [7–9] the formation of the ghost condensate has
been related to the presence of four-ghost interactions in
the corresponding gauges. From the Nambu–Jona–Lasinio
model [13] it is well known that four-Fermi interactions
can provoke the formation of bilinear condensates. How-
ever, here the coefficient of the four-ghost interaction is
proportional to an a priori arbitrary gauge parameter α.
Hence the scale of the condensate is not given by the con-
finement scale ΛQCD (we continue to denote this scale by
an index QCD, although we will consider only pure Yang–
Mills theories), unless one fine-tunes α to be proportional
to the first coefficient of the β function [7–9]. One of the
purposes of the present paper is to present a different
mechanism for the formation of a dimension 2 conden-
sate, which leads automatically to its proportionality to
Λ2

QCD.
Moreover, one would like to learn more about the re-

lation between the dimension 2 condensate and the prop-
erties of the confining phase as the area law of the Wilson
loop, the condensation of monopoles, and the vanishing of
the effective wave function normalization constants Zeff
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[14,15]. (Here Zeff corresponds to Z−1
3 in [15], and the re-

lation between the vanishing of Zeff and the Kugo–Ojima
criterion for confinement [16] has been discussed in [17].)
In the Landau gauge, relations of the dimension 2 conden-
sate with confinement have been discussed in [11,18].

The description of monopole condensation requires ei-
ther the introduction of the ’t Hooft monopole operator
[19] or the introduction of an antisymmetric tensor field
Bµν [20–23], which is dual to a monopole condensate and
couples to the surface of the Wilson loop. In [22] the rela-
tion between monopole condensation, the area law of the
Wilson loop and Zeff = 0 has been discussed in the formu-
lation of the Yang–Mills partition function involving Bµν ,
and in [24] these relations have been shown to hold in a
solvable abelian model in the large N limit.

In the present paper we will not introduce a Bµν field,
and concentrate on Zeff = 0 as a criterion for confine-
ment. In the first part of the paper (Sect. 2) we present
a simple confining abelian gauge theory, which involves
a non-renormalizable interaction ∼ λ2F 4 and has to be
equipped with a UV cutoff as, e.g., in the form of a de-
creasing momentum dependent form factor in the inter-
action term. Also the kinetic term is assumed to show
some non-trivial momentum dependence. (Both these fea-
tures of the abelian model are obtained in Sect. 3, where
the abelian model is derived from SU(2) pure Yang–Mills
theory in the abelian gauge.)

Then we will introduce a dimension 4 condensate φ
for the (abelian) field strength squared. We show that the
effective potential for this condensate can develop a saddle
point, which corresponds exactly to Zeff(φ) = 0 and where
the propagator of the abelian gauge fields behaves like q−4

for q2 → 0. As in the model in [24] this saddle point is only
“visible” if one introduces an infrared cutoff, and studies
the limit where the infrared cutoff is removed. We will
introduce a momentum space cutoff k2; alternatively the
system can be placed in a finite volume, and then the
infinite volume limit can be considered. In this limit the
confining saddle point turns into an essential singularity
of the effective potential which, however, remains finite at
this point.

In Sect. 3 we turn to SU(2) pure Yang–Mills theory in
the abelian gauge, and introduce an auxiliary field ρ for
the above-mentioned condensate of dimension 2, which
renders the charged gauge fields (and ghosts) massive. Af-
ter integrating out these charged fields, the remaining ef-
fective action for the abelian gauge field (and ρ) resembles
the abelian model of Sect. 2. Repeating the steps of Sect. 2
one finds that the “confining” saddle point of the effective
potential now also fixes ρ to be of O(Λ2

QCD).

We will argue that Zeff = 0 for the abelian gauge fields
induces also Zeff = 0 for the charged gauge fields (and
ghosts), invoking renormalization group arguments (as in
[14,15]). This has less dramatic effects on the (massive)
propagators of the charged fields, but now the couplings
of the charged fields to the abelian gauge fields, which are
induced by the U(1) covariant derivatives in the kinetic
terms of the charged fields, vanish in the infrared.

Interestingly, the essential features of the mechanism
for confinement considered here are visible already in a
loop expansion of the effective action, once the corres-
ponding auxiliary fields are introduced, and once certain
perturbatively irrelevant terms in the effective action are
taken into account.

In Sect. 4 we conclude, summarizing the essential prop-
erties of our approach.

2 A confining abelian gauge theory

A class of confining abelian gauge theories has been dis-
cussed in [24]. These models involve antisymmetric ten-
sor fields Bµν , and are solvable in the 1/N limit. In the
present section we present a simplified version of these
models: first, we do not introduce antisymmetric tensor
fields Bµν , and second, we confine ourselves to N = 1.
The field content is thus just an abelian gauge field Aµ. In
the absence of a 1/N limit the “solution” of the model is
no longer quantitatively exact, but its qualitative features
remain the same (see the discussion below).

In the presence of antisymmetric tensor fields the area
law of the Wilson loop is easily obtained in the confining
phase, since antisymmetric tensor fields couple naturally
to the enclosed surface. In the formulation with abelian
gauge fields only, the criterion for confinement becomes
a q−4 behavior of its propagator in the infrared limit,
which implies a vanishing wave function renormalization
constant Zeff as in [14,15]. (The relation between the q−4

behavior of the gauge field propagator and the area law of
the Wilson loop has been discussed in [25].)

The simplest confining abelian gauge model involves
just a kinetic term including higher derivatives, (1/4)
FµνZA(−��)Fµν , and a λ2F 4 interaction. For the model to
be confining, ZA and the dimensional coupling λ2 have to
satisfy some inequality (see below); notably ZA(0) has to
be negative. Clearly this model is “non-renormalizable”,
and has to be supplemented with an UV cutoff Λ. This
makes sense, since it is only believed to correspond to
an “effective low energy theory” of a non-abelian gauge
theory in the abelian gauge, where the off-diagonal gauge
fields are massive.

We will implement an UV cutoff by supplementing the
λ2F 4 interaction with a momentum dependent form fac-
tor, which decreases sufficiently rapidly at large momenta.
Again this form of the UV cutoff is motivated by the idea
that the λ2F 4 interaction is induced by loops of massive
non-abelian gauge fields; hence the UV cutoff is naturally
of the order of the non-abelian gauge field masses. Ac-
tually, in the Yang–Mills case the corresponding decay of
the induced form factor is not sufficiently rapid in order to
prevent logarithmic divergences, which require the stan-
dard counter terms of Yang–Mills theories. Since we are
interested in the infrared behavior of the present model,
however, we will simplify the treatment of its UV behavior
and replace the “soft” UV cutoff by a “sharp” UV cutoff.
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e−G(J) =
∫

DADφe− ∫
d4x{(1/4)FµνZA(−��)Fµν−(1/8)φ2(x)+(λ/4)φ(x)O(x)+(1/2β)(∂µAµ)2−JµAµ} (2.4)

Thus we take as action of the model (including a stan-
dard gauge fixing term)

S(Aµ) =
∫

d4x

{
1
4
FµνZA(−��)Fµν +

λ2

8
O(x)O(x)

+
1
2β

(∂µAµ)2
}

, (2.1)

with

O(x) =
∫

Dq eiqx

∫
Dp θ(Λ2 − p2)

×Fµν(p + q)Fµν(q − p) , (2.2)

where Dq ≡ d4q/(2π)4, and Fµν = ∂µAν − ∂νAµ or its
Fourier transform. The θ-function introduced in (2.2) suf-
fices to regularize all UV divergences in the approximation
considered below. For ZA(q2) we make the choice

ZA(q2) = ZA
0 +

a1q
2

a2Λ2 + q2 (2.3)

with ZA
0 + a1 > 0 such that ZA(q2 → ∞) > 0, but later

we will allow for ZA(0) = ZA
0 < 0. Again this choice will

be motivated in the next section by the idea that S(Aµ) in
(2.1) corresponds to an effective low energy theory. The
constants a1 and a2 are assumed to be positive and of
O(1).

Next we rewrite the (Euclidean) partition function of
the model, introducing an auxiliary field φ(x) for the op-
erator (2.2): (see (2.4) on top of the page).

The coefficient of the φ2 term in the exponent in (2.4)
seems to have the “wrong” sign. However, the Gaussian
path integral over φ(x) is still well defined by analytic
continuation and gives back the original action (2.1); cor-
responding procedures for auxiliary fields with “wrong”
sign quadratic terms are well known from, e.g., supersym-
metric theories in the formulation with auxiliary fields F
and D.

Now the Aµ path integral is Gaussian; the terms quad-
ratic in Aµ can be written as (up to the gauge fixing term,
and for constant φ for simplicity)

1
4

∫
DqFµν(−q)ZA

eff(φ, q2)Fµν(q), (2.5)

with

ZA
eff(φ, q2) = ZA

0 +
a1q

2

a2Λ2 + q2 + λφθ(Λ2 − q2) . (2.6)

As usual we allow ourselves to interchange the Aµ and
φ path integrals in (2.4). The logarithm of the determi-
nant of the Gaussian Aµ path integral then contributes to
the effective potential Veff(φ), which has to be used to de-
termine the saddle point of the remaining φ path integral.

The relevant point is that the saddle point φ̂ of Veff(φ),
which represents the confining phase, will correspond pre-
cisely to ZA

eff(φ̂, 0) = 0.
The Coleman–Weinberg contribution of the Gaussian

Aµ path integral to Veff(φ) reads (in the Landau gauge
β = 0)

∆V (φ) =
3
2

∫
q2dq2

16π2 ln
(
ZA

eff(φ, q2)
)

. (2.7)

Note that, due to the θ-function in (2.6), all φ-depen-
dent terms in (2.7) are ultraviolet finite; these φ-dependent
terms remain unchanged by introducing an UV cutoff Λ2

for the q2 integral and omitting the θ-function in ZA
eff .

Since ZA
eff(φ, q2) may turn negative for small q2 and

small φ, the infrared behavior of the q2 integral in (2.7)
is very delicate. Its correct behavior can only be obtained
by

(i) introducing an infrared cutoff k2 (for simplicity, we
employ a sharp cutoff of the q2 integral; the final
result does not depend, however, on this choice),

(ii) study the saddle point(s) of Veff(φ) for finite k2 and
(iii) take the limit k2 → 0 at the end.

Hence, instead of (2.7), we write

∆V (φ) =
3
2

∫ Λ2

k2

q2dq2

16π2 ln
(
ZA

eff(φ, q2)
)

, (2.8)

where now the θ-function on the right hand side of (2.6)
is replaced by 1.

The result of the q2 integral is most easily written in
terms of the combination

Σ(φ) =
a2Λ

2ZA
eff(φ, 0)

a1 + ZA
eff(φ, 0)

, (2.9)

where
ZA

eff(φ, 0) = ZA
0 + λφ . (2.10)

Now the total potential V (φ) = −(1/8)φ2 + ∆V (φ)
becomes

V (φ) = −1
8
φ2 +

3
64π2

[
(Σ2 − k4) ln(Σ + k2)

+(Λ4 − Σ2) ln(Σ + Λ2)

+ Σ(Λ2 − k2) + (Λ4 − k4) ln(a1 + ZA
eff(φ, 0))

]
+ (φ-independent) . (2.11)

The saddle point condition then reads

0 =
dV (φ)

dφ

∣∣∣∣
φ̂

= −1
4
φ̂ +

3a1a2λΛ2

32π2(a1 + ZA
eff(φ̂, 0))2

[
Σ ln

(
Σ + k2

Σ + Λ2

)
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+Λ2 − k2 +
(Λ4 − k4)(a1 + ZA

eff(φ̂, 0))
2a1a2Λ2

]
. (2.12)

In the limit k2 → 0 the product of Σ with the loga-
rithm in (2.12) can show the following subtle behavior:

k2 → 0 ,

Σ → 0−ε ,

Σ ln
(

Σ + k2

Σ + Λ2

)
→ K = const. (2.13)

where the constant K is positive and can be chosen such
that (2.12) is satisfied for k2 → 0, provided

1
4
φ̂ − 3a2λΛ4

32π2a1

(
1 +

1
2a2

)
> 0 , (2.14)

which we assume in the following. Note that Σ → 0 cor-
responds to

ZA
eff(φ̂, 0) = ZA

0 + λφ̂ = 0 , (2.15)

which has already been used in order to derive (2.14) from
(2.12). Note also that the saddle point (2.13) would be
invisible if we would put k2 = 0 from the beginning: at
the corresponding value φ̂ (corresponding to Σ = 0) the
potential V (φ̂)

∣∣∣
k2=0

and its first derivatives are finite, but
all higher derivatives diverge. Only after regularization of
this singularity (through the infrared cutoff k2) one finds
that this essential singularity of V (φ) contains a “hidden”
saddle point.

Equation (2.15) corresponds to the result announced
above: at the confining saddle point (or in the confining
phase) the auxiliary field φ, which corresponds to a con-
densate 〈FµνFµν〉, arranges itself such that ZA

eff = 0 ex-
actly (without fine-tuning).

However, the original parameters of the model have to
satisfy some inequality for the confining phase to exist:
from (2.14) and (2.15) one easily finds

ZA
0 < −3a2λ

2Λ4

8π2a1

(
1 +

1
2a2

)
, (2.16)

i.e. notably
ZA

0 < 0 (2.17)

for a1, a2 > 0, which we do assume. Equation (2.17) ex-
plains the formation of the condensate φ ∼ 〈FµνFµν〉: now
the action (2.1) is unstable at the origin of constant modes
of Fµν already classically (the classical Aµ propagator, for
φ = 0, would be tachyonic for q2 → 0).

The remarkable point is, however, that the condensate
φ̂ arranges itself in the confining phase such that the Aµ

propagator in the background φ̂ shows a q−4 behavior for
q2 → 0 (which is related, of course, to ZA

eff(φ̂) = 0): after
replacing φ by φ̂ in the exponent of the partition function
(2.4), i.e. after approximating the φ path integral by its
saddle point, the Aµ propagator can be obtained from

the inverse of (1/2)δ2G(J)/δJµ(−q)δJν(q). In the Landau
gauge, β → 0, one finds

PA
µν =

(
δµν − qµqν

q2

)
a2Λ

2 + q2

a1q4 , (2.18)

which coincides with the expression for PA
µν in confining

models with antisymmetric tensor fields Bµν [22,24].
The saddle point approximation for the φ path integral

can be rendered exact within a 1/N expansion [24], i.e.
after replacing Aµ by Aa

µ, a = 1, . . . N , and rescaling the
coupling correspondingly. In the present case the φ path
integral is, in principle, not trivial. Note, however, that
d2V (φ)/dφ2|φ̂ = −∞, i.e. the φ propagator vanishes in
the confining phase at vanishing momentum. Also, the
coupling of φ to FµνFµν is equipped with an UV regulator
(form factor), hence perturbation theory in powers of this
coupling has a good chance to converge rapidly. A detailed
study of this problem is, however, beyond the scope of the
present paper.

3 Mass gap and confinement
in SU(2) Yang–Mills theory

As stated in the introduction, we consider pure SU(2) Eu-
clidean Yang–Mills theory in a (continuum version of) the
(maximal) abelian gauge [26–28]. Aµ denotes the abelian
gauge field associated to the U(1) subgroup, and W±

µ the
remaining charged gauge fields. The classical action reads

S =
∫

d4x {LYM + LGF } (3.1)

where LYM is the Yang–Mills Lagrangian

LYM =
1
4

(∂µAν − ∂νAµ)2

+
1
2
(
DµW+

ν − DνW+
µ

) (
DµW−

ν − DνW−
µ

)
+

ig
2

(∂µAν − ∂νAµ)
(
W+

µ W−
ν − W−

µ W+
ν

)
−g2

4
(
W+

µ W−
ν − W−

µ W+
ν

)2
. (3.2)

Here the Dµ denote the U(1) covariant derivatives ∂µ ±
igAµ. After elimination of the Nakanishi–Lautrup auxil-
iary fields the gauge fixing part LGF reads

LGF =
1
2β

(∂µAµ)2 +
1
α

DµW+
µ DνW−

ν

+∂µc̄3 (∂µc3 + ig
(
W+

µ c− − W−
µ c+))

+Dµc̄+Dµc− + Dµc̄−Dµc+

+g2 (W+
µ c̄− − W−

µ c̄+) (W+
µ c̄− − W−

µ c+)
−α g2 c̄+c−c̄−c+ . (3.3)

The neutral ghosts c3, c̄3 actually decouple and will play
no role in the following. (There are no vertices involving
c3.)
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Now we introduce an auxiliary field ρ for the bilinear
dimension 2 condensate

W+
µ W−

µ + α
(
c̄+c− + c̄−c+) . (3.4)

Under BRST transformations this operator transforms
into the total derivative ∂µ(W+

µ c− + W−
µ c+) [10]; for the

explicit BRST transformations corresponding to the con-
ventions implicit in LGF see [28].

The introduction of ρ corresponds to adding to S the
complete square

Lρ =
1

2g2

(
ρ + g2W+

µ W−
µ + αg2 (c̄+c− + c̄−c+))2 ,

(3.5)
and of course ρ has to transform under BRST transfor-
mations in the same way as the negative of the operator
(3.4). It is understood that now a ρ path integral has to
be performed.

Note that, when adding (3.5) to S, we made no effort
to cancel the quartic ghost interaction term in (3.3) as in
[7–9]; the powers of g2 in (3.5) have just been introduced in
order to facilitate their bookkeeping. It is of course true
that, once this term has been cancelled, S is quadratic
in the charged ghosts, and the ghost path integral can
be performed trivially. We do not believe, however, that
the resulting contribution to the effective potential of ρ is
dominant and fixes its VEV. We will identify another con-
tribution below, which is more relevant for a small enough
gauge parameter α (but still α ∼ O(1)). In any case the
absence of the four-ghost interaction is no scale invariant
statement, since it is re-generated by W±

µ -loops (which
are not 1/N -suppressed, as in solvable four-Fermi mod-
els). Also the physical consequences of an auxiliary field
as introduced in (3.5) should be independent from the
conventions chosen for the corresponding coefficients; in
(3.5) we choose, for simplicity, conventions such that the
induced mass terms Lm for the charged fields are simply
expressed in terms of ρ:

Lm = ρ W+
µ W−

µ + αρ
(
c̄+c− + c̄−c+) . (3.6)

Next we wish to integrate over the charged fields W±
µ ,

c±. However, in order to control the UV divergences, one
should integrate simultaneously over the high momentum
modes of the abelian field Aµ(p2) with, say, p2 > Λ2. Of
course, it is not trivial to implement such an intermedi-
ate scale in a gauge (or BRST) invariant way. The best
one can do is to implement the constraint p2 > Λ2 in
a Wilsonian sense (i.e. by modifying the Aµ propagators
correspondingly) which allows one to control the BRST
symmetry with the help of modified Slavnov–Taylor iden-
tities [29]. For our subsequent qualitative results and its
essential features the details of this procedure will play
no role, however. After having renormalized the UV di-
vergences by, e.g., dimensional regularization, we are left
with an induced effective action Γeff(Aµ, ρ), which is a
functional of the low momentum modes of Aµ and of ρ.

Thus we rewrite the full Yang–Mills path integral –
including the path integral over ρ – as∫

DADWDcDc̄Dρe− ∫
d4x{LYM+LGF+Lρ}

=
∫

DA<Λ2Dρe−Γeff(A,ρ) , (3.7)

where the index < Λ2 attached to DA denotes the re-
striction to modes with p2 � Λ2, and where a U(1) gauge
fixing term (the first term in (3.3)) is understood in Γeff .

Let us first have a look at the term quadratic in Aµ in
Γeff(A, ρ). Due to the U(1) gauge invariance it has to be
of the form∫

Dq
1
4

Fµν(−q)
(
ZA

0 (ρ, µ2) + fA(q2, ρ)
)
Fµν(q) . (3.8)

Here we have suppressed the dependence on the gauge
parameter α which we assume to be of O(1) subsequently
such that, from (3.6), the masses of all charged fields are
of O(ρ). Of course ZA

0 (ρ, µ2) is of the form ZA
0 (ρ, µ2) =

1+ loop corrections, and we define the splitting between
ZA

0 (ρ, µ2) and the q2-dependence parameterized by
fA(q2, ρ) such that fA(0, ρ) = 0.

Next we discuss some particular features of the scale
anomaly in abelian gauges. A natural choice for the run-
ning gauge coupling gR (but not necessarily a physical
one; see below) is the coupling g in the U(1) covariant
derivative Dµ = ∂µ ± igAµ, after rescaling Aµ such that
its kinetic term (3.8) is properly normalized (at q2 = 0).
In the case of (3.8) this immediately leads to

g2
R =

g2

ZA
0 (ρ, µ2)

, (3.9)

where g2 is constant. The derivative of g2
R with respect

to its dimensionful arguments gives the β-function in a
herewith defined renormalization scheme. In our case one
finds by inspecting the diagrams which contribute to ZA

0 ,
and taking into account that the circulating charged fields
have masses given by ρ, that to one-loop order Z

A(1)
0

is independent of the infrared cutoff Λ2 of the abelian
gauge fields, since no internal Aµ propagators appear.
Thus Z

A(1)
0 (ρ, µ2) depends on ρ as dictated by the uni-

versal one-loop coefficient β0 of the β-function (cf. [27]):

Z
A(1)
0 (ρ, µ2) = 1 − g2β0 ln

(
µ2

c1ρ

)
+ O(g4) with

β0 =
11

24π2 , (3.10)

where µ2 is the scale where g2 is defined, and c1 is an
arbitrary coefficient.

Next we consider the q2-dependence of fA(q2, ρ) in
(3.8). By definition (by choosing the coefficient c1 in (3.10)
correspondingly) it vanishes at q2 = 0, and for large q2 	
ρ the same scale anomaly arguments force it to behave, to
one-loop order, as

fA(q2, ρ) ∼ g2β0 ln
(

q2

ρ

)
. (3.11)

For our subsequent purposes it will be sufficient to replace
the logarithmic increase in (3.11) by a positive constant
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for q2 → ∞, since momenta with q2 	 ρ will be cut off
anyhow (see below). Thus we parameterize fA as

fA(q2, ρ) ∼ a1q
2

a2ρ + q2 , (3.12)

with a1, a2 positive numerical coefficients of O(g2), O(1),
respectively. Now the kinetic terms in (3.8) are of the form
of the kinetic terms of the model in Sect. 2, provided we
identify ZA

0 in (2.3) with ZA
0 (ρ, µ2) in (3.8) (or (3.10)), and

Λ2 in the denominator in (2.3) with ρ in the denominator
in (3.12).

Next we will discuss the leading perturbatively irrele-
vant terms in Γeff(Aµ, ρ) generated by loops of the (mas-
sive) charged fields. Again, by U(1) invariance (and a dis-
crete Z2-symmetry Aµ → −Aµ), these have to be quartic
in the abelian field strength ∼ (Fµν)4, convoluted with a
form factor of the four in- or out-going momenta. Dimen-
sional analysis dictates that, for large and equal Euclidean
momenta q2, the form factor has to decay like q−4. For
distinct momenta this form factor will be a complicated
function including possible open Lorentz indices.

For our subsequent purposes it will be sufficient to
assume the presence of a particularly simple structure
among all possible terms ∼ (Fµν)4, which we parameterize
as

λ2

8

∫
d4x O(x) O(x) , (3.13a)

O(x) =
∫

Dq eiqx

∫
Dp Fµν(p + q) h(p2)

×Fµν(q − p) , (3.13b)

where, for the above reasons, h(p2) has to decay like p−2

for large p2. λ2 is of the order of

λ2 =
λ̂2g4

16π2ρ2 , (3.14)

where λ̂ is of O(1).
Note that the expression (3.13a) appears with a posi-

tive sign. This follows from the limit of large field strengths
Fµν (at vanishing momenta), where the dependence of the
induced effective action on F 2

µν must be of the form∫
d4x F 2

µν

(
1 + g2β0 ln

(
C1 + F 2

µν

C2

))
, (3.15)

for some constants C1 ∼ C2 ∼ Λ4
QCD, in order to repro-

duce the scale anomaly [30]. Expanding (3.15) to O(F 4
µν)

gives a positive coefficient.
Subsequently we replace h(p2) by a “sharp” cutoff,

h(p2) ∼ θ(ρ − p2) . (3.16)

Note that the scale of the “UV cutoff” in (3.16) has
to be of O(ρ), since the contribution (3.13a) to Γeff(Aµ, ρ)
was generated by loops of the charged fields with masses
of O(ρ) and consequently h(p2) decays only for p2 	 ρ.

With the sharp cutoff we throw away logarithmic effec-
tive two-loop divergences, which would contribute to the
Aµ propagator (and hence to the renormalization of g2)
once one-loop diagrams with the effective vertex (3.13) are
computed. Here, however, we are not interested in the two-
loop β-function, but in capturing the essential features of
the infrared regime.

Hence, in the present approximation, Γeff(Aµ, ρ) coin-
cides with S(Aµ) of the previous model in (2.1), provided
we perform the following replacements of the parameters
of the model in Sect. 2:

(i) replace ZA(q2) in (2.1) and (2.3) by ZA(q2, ρ), with

ZA(q2, ρ) = ZA
0 (ρ, µ2) +

a1q
2

a2ρ + q2 , (3.17)

where, to one-loop order, ZA
0 (ρ, µ2) has the form

given in (3.10);
(ii) replace Λ2 in the θ-function in (2.6) by ρ, and λ by

a ρ-dependent expression of the form (3.14).

At this point it may be helpful to summarize the proce-
dure and the approximations under which the Yang–Mills
theory turns into the confining abelian model of Sect. 2:

(1) An auxiliary field ρ for a dimension 2 condensate is
introduced, such that all charged gauge fields and ghosts
are massive for 〈ρ〉 
= 0 (which remains to be shown).

(2) The path integral over the charged gauge fields and
ghosts, as well as over the “high momentum modes” (with
p2 > Λ2) of the neutral gauge field Aµ, is performed.

(3) The resulting effective action Γeff(Aµ, ρ) is not com-
puted exactly, but assumed to be well approximated by
the following form:
(a) The term quadratic in Aµ in Γeff is given by the
wave function normalization function ZA(q2, ρ) of (3.17),
whose dependence on q2 and ρ is known (from the scale
anomaly) for large q2 or ρ, but parameterized by an “ed-
ucated guess” for small q2 and ρ. For vanishing q2, ZA(0,
ρ) ≡ ZA

0 (ρ, µ2) is assumed to be given by an extrapola-
tion of the one-loop (or scale anomaly) result (3.10), valid
for large ρ, towards small ρ. Then, notably, ZA(0, ρ) turns
negative for ρ < O(Λ2

QCD). This (and only this) assump-
tion is crucial for the subsequent results.

The dependence of ZA(q2, ρ) on q2 has to be interpo-
lated between ZA(0, ρ) and the known scale anomaly re-
sult (3.11) for large q2. Our subsequent qualitative results
do not depend on the precise dependence of ZA(q2, ρ) on
q2; therefore, in order to allow for an analytic computation
of the integral over q2 appearing below, we parameterize
its q2-dependence by the simple analytic structure (3.17),
which replaces the logarithmic increase for q2 → ∞ by a
constant a1.
(b) The term quartic in Aµ in Γeff is approximated by the
F 4 term described in (3.13)–(3.16), i.e. more complicated
tensorial structures are dropped and the form factor is re-
placed by the sharp cutoff (3.16). As in the case of the sim-
plified parameterization of the q2-dependence of ZA(q2, ρ)
above, these approximations do not qualitatively affect the
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e−G(J) =
∫

DA<Λ2DρDφe− ∫ Dq{(1/4)FµνZA
eff (φ,q2,ρ)Fµν+(1/(2g2))ρ2+V̂ (ρ)−(1/8)φ2+(1/(2β))(qµAµ)2−JµAµ} , (3.18)

results below, but allow for subsequent analytic computa-
tions. Finally, terms of higher order in Aµ are dropped in
Γeff , again for computational simplicity.

The Yang–Mills partition function (3.7) can then be
rewritten, as in the previous model, invoking an auxiliary
field φ. Including a source for Aµ as in (2.4) one obtains
(see (3.18) on top of the page) with

ZA
eff(φ, q2, ρ) = ZA(q2, ρ) + λφθ(ρ − q2) . (3.19)

The term ρ2/2g2 in the exponent in (3.18) originates
from Lρ (3.5), and V̂ (ρ) from the path integrals over W±

µ

and c±. In [7–10] one-loop expressions for V̂ (ρ) have been
used in order to fix the VEV ρ̂ of ρ (the saddle point of
the ρ path integral), with the unsatisfactory result that
ρ̂ depends correctly on ΛQCD only for a fine-tuned value
of the gauge parameter α. Here we argue, instead, that
ρ̂ is determined by another contribution to V (ρ), which
is obtained in analogy to the model in Sect. 2. Then ρ̂
depends automatically on ΛQCD, as it should (see below).

The full effective potential Veff(φ, ρ) is obtained by per-
forming the Aµ path integral in (3.18), i.e.

Veff(φ, ρ) =
1

2g2 ρ2 + V̂ (ρ) − 1
8
φ2 + ∆V (φ, ρ) , (3.20)

with ∆V (φ, ρ) as in (2.8):

∆V (φ, ρ) =
3
2

∫ Λ2

k2

q2dq2

16π2 ln
(
ZA

eff(φ, q2, ρ)
)

. (3.21)

If we replace the upper limit Λ2 of the q2 integral in
(3.21) by ρ, the result for ∆V (φ, ρ) can be obtained from
the previous results in Sect. 2 after simple substitutions.
The “error” is then given by a q2 integral ranging from ρ
to Λ2. However, below we are only interested in ∆V (φ, ρ)
near the saddle point ρ̂; choosing, at the end, Λ2 ∼ ρ̂, this
error can be made arbitrarily small.

The φ-dependent terms in ∆V (φ, ρ) are then given by
V (φ) as in (2.11), after replacing Λ2 by ρ everywhere, and
ZA

eff(φ, 0) by

ZA
eff(φ, 0, ρ) = ZA

0 (ρ, µ2) + λφ . (3.22)

The φ-independent terms in ∆V (φ, ρ), neglected in
(2.11), are quadratic in ρ and of O(ρ2/16π2), hence negli-
gible compared to the “tree level” term ρ2/2g2 in (3.20).

In order to determine the extrema φ̂, ρ̂ of Veff(φ, ρ) we
first look for extrema with respect to φ, plug the resulting
expression φ̂(ρ) back into Veff(φ̂(ρ), ρ), and minimize with
respect to ρ at the end.

The equation for extrema with respect to φ can again
be taken from Sect. 2, see (2.12), with the substitutions
above. Hence we obtain the following important results:

(i) again a confining saddle point exists, which shows the
behavior (2.13) and, in analogy with (2.15),

ZA
eff(φ̂, 0, ρ) = ZA

0 (ρ, µ2) + λφ̂ = 0 . (3.23)

Equation (3.23) fixes the dependence of φ̂(ρ) on ρ:

φ̂(ρ) = −λ−1ZA
0 (ρ, µ2) . (3.24)

(Recall that here λ depends on ρ, cf. (3.14).)
(ii) the necessary condition for the confining phase to ex-
ist, the analog of (2.16) with λ2 as in (3.14), now reads

ZA
0 (ρ, µ2) < −O

((
g2

8π2

)2
)

, (3.25)

i.e. essentially
ZA

0 (ρ, µ2) < 0 . (3.26)

It remains to show that a saddle point ρ̂ with the
above properties actually exists. Neglecting in Veff terms
of O(ρ2/16π2) relative to ρ2/2g2 as above, ∆Veff(φ̂(ρ), ρ)
can be dropped and Veff(φ̂(ρ), ρ) is simply given by

Veff(φ̂(ρ), ρ) =
1

2g2 ρ2 − 1
8
φ̂(ρ)2 + V̂ (ρ) (3.27)

=
1

2g2 ρ2 − 2π2ρ2

λ̂2g4

(
ZA

0 (ρ, µ2)
)2

+ V̂ (ρ) ,

where we have used (3.24) and (3.14). Let us first neglect
V̂ (ρ) in (3.27), which was generated by the path inte-
gral over the charged fields: using the one-loop expression
(3.10) for ZA

0 (ρ, µ2) one finds that Veff(φ̂(ρ), ρ) vanishes
for ρ → 0, and is negative for small ρ, since Z

A(1)
0 diverges

logarithmically for ρ → 0. Then there appears a mini-
mum, where Z

A(1)
0 (ρ, µ2) is negative and of O(g2). This

minimum constitutes the desired confining saddle point ρ̂.
If we continue to increase ρ, Veff(φ̂(ρ), ρ) increases until
it reaches a maximum where ZA

0 (ρ, µ2) is positive (still of
O(g2)), and for ρ → ∞ it is unbounded from below as in
the case of V (φ) for φ → ∞. Hence all we have to require
from V̂ (ρ) is that it does not destroy the desired saddle
point, i.e. that it is small enough for the corresponding
value ρ̂.

V̂ (ρ), as computed in [7–10], is proportional to the
arbitrary gauge parameter α, since it has its origin in the
quartic ghost interaction term (the last term in (3.3)):
with the definition (3.5) for ρ we have V̂ (ρ) ∼ (α/16π2)
ρ2 ln ρ2. Since α is multiplicatively renormalized [28], it is
always possible to choose gauges (bare values of α < O(1),
since λ̂ in (3.27) is of O(1), and ZA

0 (ρ̂) is of O(g2)) such
that the effect of V̂ (ρ) in (3.27) is negligible. The above
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result is thus valid in abelian gauges with α smaller than
some critical value of O(1).

From
ZA

0 (ρ̂, µ2) ∼ − O(g2) (3.28)

one easily obtains, using the one-loop expression (3.10) for
ZA

0 (ρ̂, µ2),

ρ̂ ∼ c−1
1 µ2 e−(1/(g2β0))(1+O(g2)) ∼ Λ2

QCD , (3.29)

which is the result announced above and which has to be
contrasted with the results in [7–9], where the dimension
2 condensate scales correctly only for a particular choice
of the gauge parameter α, α = (1/2)β0.

Actually, if one computes ZA
0 (ρ̂, µ2) to higher loop or-

ders, (3.28) (or a more accurate minimization of the ef-
fective potential with respect to ρ) always defines a scale
Λ2

QCD through its solution ρ̂. From (3.24), with λ ∼ ρ−1,
one finds immediately that also φ̂(ρ̂) ∼ Λ2

QCD and hence

〈FµνFµν〉 ∼ λ−1φ̂ ∼ Λ4
QCD . (3.30)

Clearly, in terms of the running coupling g2
R(ρ) defined

in (3.9) through ZA
0 (ρ̂, µ2), the condition (3.25) for the

confining saddle point corresponds to g2
R(ρ̂) < 0, i.e. g2

R
has “passed” a Landau singularity. However, the kinetic
term of the Aµ field in the full effective action in the pres-
ence of the condensate φ̂ is proportional to Zeff(φ̂, q2, ρ̂)
(cf. (3.19)) and is never negative, but vanishes for q2 → 0.
Hence, if one insists on defining a running coupling g(q2)
in terms of ZA

eff(φ̂, q2, ρ̂)−1, it diverges in the confining
phase for q2 → 0. We do not find this convention very
appropriate, however, since it refers to the virtualities q2

of the abelian gauge fields Aµ only. We prefer to continue
to parameterize the vertices by the constant g2, keeping
the q−4 behavior of the propagator PA

µν(q2).
Let us discuss the couplings of the charged gauge fields

to Aµ in more detail. The U(1) gauge symmetry (left un-
broken up to the standard U(1) gauge fixing term) allows
one to separate these couplings into two classes:
(i) couplings involving the abelian field strength Fµν . Here
additional derivative(s) act on Aµ, which soften infrared
divergencies of loops involving the Aµ propagator emerg-
ing from such vertices.
(ii) couplings involving the U(1) covariant derivative Dµ =
∂µ ± igAµ acting on charged fields. These appear in the
U(1) invariant kinetic energy terms for W±

µ and the
charged ghosts in the Lagrangian (3.2), (3.3). In the quan-
tum effective action these kinetic terms appear multiplied
with wave function renormalization constants ZW , Zc, re-
spectively. In the following we will study the behavior of
these constants in the infrared limit and find that they
vanish; this automatically suppresses the couplings of the
neutral to charged gauge fields in the infrared.

For a most general parameterization of the quantum ef-
fective action the wave function renormalization constants
should actually be replaced by functions of the (covariant)
Laplacian DµDµ or, in momentum space, by functions of
q2 plus the corresponding couplings to the neutral gauge

field Aµ required by U(1) gauge invariance. In general, for
large Euclidean non-exceptional momenta q2 → ∞, the
parameters of the quantum effective action approach their
“bare” values (ZW , Zc = 1). Subsequently we replace ZW

and Zc by constants for simplicity, i.e. we compute these
functions at q2 = 0. Hence their vanishing does not sup-
press the associated couplings to Aµ completely, just the
associated form factors in the limit q2 → 0.

In the simplified parameterization of the quantum ef-
fective action with constant ZW , Zc, the relevant terms
(quadratic in W±

µ and the charged ghosts) read

ZW

2
(
DµW+

ν − DνW−
µ

) (
DµW−

ν − DνW−
µ

)
+ ρW+

µ W−
µ

+
ZW

α

(
DµW+

µ

) (
DνW−

ν

)
(3.31)

+Zc

(
Dµc̄+Dµc− + Dµc̄−Dµc+)+ αρ

(
c̄+c− + c̄−c+) .

Here we have included the mass terms originating from
Lm in (3.6). To one-loop order ZW and Zc get renor-
malized only by “rainbow” diagrams where the rainbow
corresponds to a Aµ propagator of the form (2.18) (we
continue to work in the Landau gauge, β → 0, for the
abelian sector). For convenience we introduce the nota-
tion ϕ = {W±

µ , c±} in the following. Our aim is now to
derive a renormalization group equation for Zϕ. From the
Aµ–ϕ–ϕ vertices from (3.31) one finds that the one-loop
contributions to Zϕ due to the rainbow diagrams are

∆Zϕ = cϕ g2 Z2
ϕ

∫
q2dq2

16π2 Pϕ(q2) PA(q2) . (3.32)

Here Pϕ are the massive W±
µ /c± propagators,

Pϕ(q2) =
1

Zϕq2 + (α)ρ̂
(3.33)

(where the factor α appears only for the ghosts, and equals
1 for W±

µ ), and PA(q2) reads, from (2.18),

PA(q2) =
a2ρ̂ + q2

a1q4 . (3.34)

The constants cϕ in (3.32) read (for SU(2))

cϕ=W = −1
6
(17 − 3α) ,

cϕ=c = −3 . (3.35)

Note that, for α not too large, we have cϕ < 0.
In order to derive a renormalization group equation

from (3.32) we proceed as in the case of the computation
of the effective potential V (ρ, φ). We introduce an infrared
cutoff k2 for the q2 integral in (3.32), and replace the con-
stants Zφ by Zφ(k2). Then we take the derivatives with
respect to k2 of both sides of (3.32) and study the running
of Zϕ(k2). As before such an infrared cutoff could be im-
plemented in the “Wilsonian” way by modifying the prop-
agator PA(q2), but for the present purposes it is sufficient
to simply cut off the q2 integral in (3.32) at its lower end.
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(Also this procedure can be re-interpreted as a “sharp”
Wilsonian cutoff function in PA(q2).) After introduction
of this infrared cutoff k2, and taking the derivative d/dk2

on both sides of (3.32), one obtains

k2 dZϕ(k2)
dk2 = −Z2

ϕ(k2)
cϕg2

16π2 k4 Pϕ(k2) PA(k2) , (3.36)

which becomes in the deep infrared regime, k2 � ρ̂,

k2 dZϕ(k2)
dk2

∼= −Z2
ϕ(k2)

cϕg2

16π2

a2

(α)
. (3.37)

(Again the factor α in the denominator appears only for
the charged ghosts.) Note that, if PA(q2) would not behave
as q−4 for q2 → 0, Zϕ(k2) would stop to run with k2 for
k2 � ρ̂. Equation (3.37) is easily solved with the result

Zϕ(k2) =
Zϕ(Λ2)

1 + Zϕ(Λ2)
cϕg2

16π2

a2

(α)
ln
(

k2

Λ2

) , (3.38)

and hence, for k2 → 0 and with cϕ < 0, we obtain Zϕ(0) =
0 as announced. One can check that the contributions from
multi-rainbow diagrams to the running of Zϕ(k2) are sup-
pressed by higher powers of the bare coupling g2. Also,
the renormalization of the ρ vertex to the charged fields
(or their mass terms) is infrared finite precisely because of
the massiveness of the charged fields, in spite of the q−4

behavior of the Aµ propagator.
The question arises, however, whether this suppres-

sion of the Aµ–ϕ–ϕ couplings for q2 → 0 does not inval-
idate the contributions of the ϕ-loops to the effective ac-
tion Γeff(Aµ, ρ), which have been used extensively before.
The essential features of these contributions, on the other
hand, arise either from the virtualities q2 of the ϕ-fields
(W±

µ , c±) which are very large (q2 → ∞), or from q2 ∼ ρ
where the massiveness (infrared finiteness) of the charged
propagators is used. These features remain valid even if
the Aµ–ϕ–ϕ couplings become suppressed for q2 � ρ, and
Zϕ in the ϕ propagators becomes replaced by Zϕ(q2) with
Zϕ(0) = 0.

This result completes the confinement criterion Zeff =
0 of [14,15], which now holds for all fields of pure Yang–
Mills theory including the charged ones: the simple poles
of their propagators disappear, since their mass terms re-
main finite. In the abelian gauge the Aµ–W+

µ –W−
µ vertex

form factor will of course not be symmetric in the three
external momenta; the present result applies to the limit
of vanishing momenta squared of the charged fields W±

µ .
Nevertheless this behavior of the vertex form factor helps
to suppress infrared divergencies of higher order loop dia-
grams, which helps to render the present approach stable
with respect to higher loop orders.

4 Conclusions and outlook

The aim of the present paper is to show how the coopera-
tion of two condensates of dimension 2 and 4, respectively,

generates both the confinement condition Zeff = 0 and a
mass gap for the charged fields in the abelian gauge in the
confining phase. The study of a subtle saddle point of the
effective potential is required to this end, which is only
visible in the limit where an artificial infrared cutoff goes
to zero.

The only role of the dimension 2 condensate is actually
to give masses to all charged fields, i.e. the charged gauge
fields W±

µ and the charged ghosts. We choose the BRST
invariant combination of bilinear charged gauge fields and
ghosts here; the ghost condensates in [7,9] are claimed to
induce masses for the charged gauge fields by loops and
could, in principle, do the same job. The formal proof of
gauge invariance of the Yang–Mills quantum effective ac-
tion relies, however, on the vanishing of the expectation
values of all BRST-exact operators. This is no longer guar-
anteed, if the BRST symmetry is spontaneously broken.

Here we have concentrated on the condition Zeff = 0
for confinement, which corresponds to the absence of col-
ored asymptotic states. It would be quite straightforward,
however, to introduce additional (auxiliary) antisymmet-
ric tensor fields Bµν for the abelian field strength, and to
study the corresponding effective action. As in the case of
the 1/N -solvable abelian models [24] this would make the
relation with monopole condensation and the area law for
the Wilson loop explicit.

Also for simplicity we have insisted on simple parame-
terizations of the q2- and ρ-dependences of various terms
in the effective action, in order to allow for an analytic
study of the appearance of the confining saddle point.
It would not be too hard to compute these dependencies
exactly (to one-loop order); then, however, the confining
saddle point induced by Aµ-loops could be studied only
numerically and would be somewhat less obvious.

On the other hand our parameterizations reproduce
the essential features of the relevant terms in the effective
action, which allows one to study the essential mechanism
behind the confining saddle point: without the condensate
φ ∼ F 2

µν , ZA
eff(ρ̂) would turn negative for ρ̂ small enough.

This corresponds to a non-convexity of Γeff(F 2
µν) around

the origin, which is impossible. The condensate φ then
renders Γeff(F 2

µν) semi-convex, which corresponds to the
non-analytic behavior of its effective potential.

The fact that these essential features are visible al-
ready after the computation of one-loop diagrams should
not make one believe that confinement is “perturbative”:
if one eliminates all auxiliary fields by its equations of
motion at the very end it becomes clear that, by comput-
ing Γeff in its presence, one has implicitly summed up an
infinite number of loops.

Nevertheless the question arises whether the present
approach would allow for quantitatively stable higher or-
der corrections, once lowest orders are computed with suf-
ficient precision. (Given that even perturbation theory is
not asymptotically stable, this is evidently a rather am-
bitious program.) More concretely, this corresponds to
the question whether possible infrared divergencies from
higher order corrections can be controlled or, better,
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shown to be absent. Two steps in this direction are, in
the present approach,
(i) the massiveness of the charged gauge fields (and
ghosts), and
(ii) the vanishing of the wave function renormalization
constants of the charged fields in the infrared. Notably this
latter phenomenon will suppress very long range correla-
tion functions between operators involving charged fields
in spite of the q−4 behavior of the abelian propagator.

Finally we remark that the simultaneous presence of
a mass gap (of the charged fields) and confining interac-
tions (as induced by the abelian sector) can most likely
be made explicit only in the abelian gauge. This gauge
evidently plays an essential role in the present approach,
which describes a quite explicit dynamical mechanism be-
hind the confining phase in continuum Yang–Mills theory.
An interesting task for the future will be the study of
the constraints on the full effective action Γeff which arise
from the Slavnov–Taylor identities in the abelian gauge
(suitably generalized due to the presence of the auxiliary
fields), once the present results on some selected terms in
Γeff are taken into account.
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